
micro:bit Physical
Computing Fundamentals

Physical Computing for
Code.org CS Fundamentals Course F

2

Contents

1. Welcome to micro:bit Physical Computing Fundamentals 3

What you’ll find in this guide� 4

CS Fundamentals and physical computing� 5

An introduction to the BBC micro:bit physical computing device� 6

2. “Meet your micro:bit” exploration 7

What your students will learn� 8

Lesson format� 9

Equipment list� 9

	 “Meet your microbit” video guide� 9

Before the lesson preparation� 10

Lesson 1: Meet your micro:bit� 12

Warm up� 12

Main activity� 13

Wrap up� 14

CS talking points for code� 15

Extended learning� 17

3. Coding lessons 18

Coding lesson menu� 19

How to teach the coding lessons� 20

Lesson 2: Step counter� 22

Lesson 3: micro:bit pet� 25

Lesson 4: Max-min thermometer� 29

4. Vocabulary 34

3

Section 1
Welcome to micro:bit Physical

Computing Fundamentals

4

Welcome to micro:bit Physical
Computing Fundamentals
What you’ll find in this guide
This guide contains everything you need to use the BBC micro:bit to add the
immersive power of physical computing to your teaching of Code.org’s CS
Fundamentals Course F.

You’ll find:
	� An introductory exploration lesson so you and your students can get

to know some of the micro:bit’s features and start making links with prior
learning.

	� A coding lesson menu to help you choose lessons that suit your students.
	� A guide to teaching the coding lessons, which explains how you can use

different resources that suit your students, such as step-by-step coding
videos and micro:bit classroom sessions.

	� Three coding lessons to choose from matched to relevant CS topics.
	� Key vocabulary relevant to CS Fundamentals Course F and physical

computing with the micro:bit.

https://studio.code.org/s/coursef
https://studio.code.org/s/coursef

5

What your students will learn —
CS Fundamentals and physical computing
Lessons in this guide build on what your students are already learning and allow
them to transfer that from the screen into physical projects they can code and hold
in their hands.

Computing topics from CS Fundamentals covered in these lessons include:
	� Variable – a label for a piece of information used in a program
	� Data – a collection of information
	� Simulation – a program which replicates or mimics key features of a real

world event
	� Event – an action that causes something to happen
	� Loop – the action of doing something over and over again
	� Conditional – a statement that only runs under certain conditions

Note that events, loops, and conditionals are not specifically covered as main
topics in CS Fundamentals Course F, but are covered in previous courses, and your
students should already be familiar with them from prior learning.
There are four micro:bit physical computing guides for CS Fundamentals Courses
C through F, so you can use micro:bit projects with students from second grade
through fifth grade.

6

An introduction to the BBC micro:bit physical
computing device

The BBC micro:bit is a tiny computer used by millions of children around the world.
It’s packed with inputs like buttons and sensors for light, movement, temperature,
magnetism, and sound. It can also output pictures, numbers, and words on its LED
display, make sound and music, and even communicate with other micro:bits using
radio.
The micro:bit needs instructions—programs—to tell it what to do. Using the online
Microsoft MakeCode block editor, your students will be able to create working
code in seconds which they can test out in the simulator before transferring them
to a real micro:bit over a USB cable. They can then unplug the micro:bit from the
computer, attach a battery pack, and use their projects anywhere.
By making micro:bit projects, your students can take their code off the screen and
make self-contained physical devices they can hold in the palms of their hands,
making abstract computing concepts tangible.
You can find out more about the BBC micro:bit, including more projects, lessons,
and support, on our website: https://microbit.org/

https://microbit.org/

7

Section 2
“Meet your micro:bit”

exploration lesson

8

“Meet your micro:bit” exploration lesson

What your students will learn
This lesson is a pre-requisite for teaching the coding lessons in this guide. It
gives your students an early hands-on experience to discover the excitement that
learning with the micro:bit offers.
It helps reinforce what your students already know about code and computing
concepts by transferring them to the physical world through exploring pre-
programmed micro:bits.
The exploration is also designed for you to model reviewing code together, helping
your students make links between familiar computing concepts and their practical
application by programming a physical device.

9

Lesson format
The lesson requires some short preparation to transfer the exploratory project onto
micro:bits to share with your students:

	� Watch the video
	� Put code onto micro:bits

Then teach the lesson:
	� Warm-up: introduce the micro:bit and the activity.
	� Main activity: students work in pairs to explore pre-programmed micro:bits.

They’ll explore different physical inputs and outputs while you challenge
them to think about what computing concepts might be being used to make
the program work.

	� Wrap-up: discuss what they’ve discovered and look at the project code
together. You’ll start to familiarize yourselves with the online Microsoft
MakeCode block editor.

You can optionally follow this with another lesson where students recreate the code
for themselves.

Equipment list
You will need:

	� Access to the MakeCode online editor on the teacher’s computer.
	� Several micro:bits with micro USB cords. One micro:bit for every two to

three students is ideal.
	� A power source for the micro:bits. Battery packs are best, but you can

also power them from computer USB ports.

“Meet your microbit” video guide
We’ve created a YouTube video to introduce this first lesson to you:
https://mbit.io/csf-1-lesson-guide

10

Before the lesson preparation

This is also a chance to familiarize yourself with the main parts of the
MakeCode editor:

The Simulator, a virtual micro:bit that lets you demonstrate working code
to your students, and lets your students test, debug, iterate, and improve
their code before transferring it to their micro:bits. Click on button A to try
it out.

The Toolbox, where you’ll find the code blocks you need.

The Workspace, where you’ll assemble program code blocks.

The Download button. Click on this when you’re ready to transfer code
to a micro:bit connected by a micro USB cable to your computer.

1

2

3

4

1 2

3

4

Get to know the MakeCode editor
Follow this link to open the “Meet your micro:bit” MakeCode project:
https://mbit.io/csf-1-project

https://mbit.io/csf-1-project

11

Transfer the project code onto your class micro:bits
Click on “Download” to save the MakeCode blocks program as a HEX file. This a
special version of the program the micro:bit can understand.

Plug a micro:bit into your computer’s USB port. It should appear on your computer
like a USB flash storage drive called MICROBIT.

Drag and drop the “Meet your micro:bit” HEX file from your computer’s downloads
folder to the MICROBIT drive. You should see a light on the back of your micro:bit
flash as it copies. The program will start running on the micro:bit as soon as the
copying is complete. Note that programs stay on the micro:bit even when the
power is disconnected.
Copy this HEX file onto several micro:bits—one for every two to three students is
ideal.

12

Lesson 1: Meet your micro:bit

Warm up
Introduction Introduce the BBC micro:bit to your students:

	� The micro:bit is a tiny computer you can program to
make self-contained projects to do different things.

	� For it to work, it first needs to be programmed to tell it
what to do.

	� Today you’ll be given micro:bits that have already
been programmed. What can you figure out about the
micro:bit and the code that makes it work?

Events The program on these micro:bits responds to different
events—can your students work out what they are?
(Pressing different buttons and shaking the micro:bit)

Inputs & Outputs Your students should consider what inputs—ways of
getting information into the computer—this micro:bit
project is using: the buttons, the accelerometer that senses
when you shake the micro:bit, and the light sensor that
measures how much light is falling on the micro:bit.
Also ask your students what outputs it’s using. Outputs
are used to send information from a computer out into the
world—for example pictures and text on the micro:bit’s LED
display.

A note about sound
If your students have the BBC micro:bit V2, they’ll also hear different sounds
on the built-in speaker output when they press different buttons and shake the
micro:bit. You could ask your students to think about what kinds of information
they can communicate with sound. Can sounds be happy? Sad? Fast? Slow?
Can sounds even say “hello” or “goodbye”?
If your students have the micro:bit V1, they can hear the sounds by connecting
headphones or an amplified speaker with alligator clips to pin 0 and pin
GND—the diagram in the MakeCode simulator shows you how to make the
connection. This is not essential—you can run this activity completely
without sound.

13

Main activity
Examine the
micro:bit

Students work in pairs or small groups to investigate the
micro:bit and identify events, inputs, outputs, and any
coding concepts they recognize from prior learning.
They can optionally record their findings in any way you
wish—for example on paper, whiteboards, or electronically.
It can also be informal or formal—for example in a table.

Explore the “Meet
your micro:bit”
project

Students should...
	� Connect a power source (battery pack or USB cord)

and notice what happens (a happy face appears on
the LED display output).

	� Press button A to see a zooming square animation.
Does it repeat? How many times? Does it get faster or
slower? What computing concepts might be making
this work? (A sequence to make an animation; loops
to make the animation repeat).

	� Press button B to see text scroll across the display.
Where else do they see visual information displayed
like this? What might they use it for on the micro:bit?

	� Press buttons A and B together to make a sun or
moon appear. Can your students figure out what is
making the image change? (The LED display output
can also work as a light sensor input, so if they cover
the micro:bit they’ll see a moon, and if they shine light
on it they’ll see a sun).

Get hands on!

14

Wrap up
Discussion Ask your students to discuss what they discovered

with you and the class.
Share the code (https://mbit.io/csf-1-project)
with your students and see how many computing
concepts they already know that are used to make
the project work. You can use the simulator as you
go.
Talk about as many of the event blocks as
are appropriate to the time available and your
students’ prior learning.

Code Expert!

https://mbit.io/csf-1-project

15

CS talking points for code
“on start” event block
The micro:bit starting to run the program is the
event that triggers the “on start” block. “show
icon happy” is the first instruction. So, we see a
happy face on the micro:bit when it’s powered up.
It’s an opportunity to talk about visual displays
as outputs, which are how computers send
information out into the world.

“on button A pressed” event block
“on button A pressed”, “on button B pressed”, “on
button A plus B pressed” and “on shake” are all
input blocks, triggered by different events.
The “on button A pressed” block is triggered by
the event of pressing the button A input on the
micro:bit. It then carries out the instructions to play
the sound output and display the zooming square
animation.
If you used sound in your exploration, look at the
“start melody” block and listen to the sounds
when you click on the buttons in the simulator.
After the sound starts playing, a loop starts,
repeating an animation two times.
The display shows a square getting bigger quickly
and getting smaller slowly.
The sequence of images makes up the animation.
The pause blocks keep images on the screen
for different times—smaller numbers make the
animation faster, larger numbers make it slower.

16

“on button B pressed” event block
The “on button B pressed” input block uses
another event to trigger instructions that clear the
screen, pause briefly, then show the word “hello”
as a greeting on the LED display output. What else
do your students think they could use that for?

“on button A+B pressed” event block
The “on button A+B pressed” input block reacts
to the event of pressing both buttons at the same
time.

The program uses a conditional statement:
If the light level is less than 50, then it shows a
moon on the LED display output.
Else (otherwise) it shows a sun.
This part of the code shows different pictures on
the display output, depending on the amount of
light around you.
The light level is measured by another input, the
“light level” block, which measures how much light
is falling on the micro:bit.
So, the LED display works as a light sensor input
and also as an output to display our pictures and
messages.
What could your students build with a tiny
computer that knows when it’s light or dark around
you?

17

“on shake” event block
The “on shake” input block is triggered by an
event when the micro:bit’s accelerometer sensor
detects movement. The micro:bit shows a
surprised face, pauses for one second, and clears
the screen.
Ask your students what other technology they
know that reacts to movement.
How might you use movement in your own
projects?

Extended learning

Other resources You can use any of these resources to support an
optional follow-up lesson, where your students
recreate the code for themselves and practice
transferring code to their micro:bits. You can further
challenge them to remix the code to add more
inputs and outputs.

	� Introduction video: https://mbit.io/csf-1-intro
	� Step-by-step coding video:

https://mbit.io/csf-1-coding
	� Completed MakeCode project:

https://mbit.io/csf-1-project
	� micro:bit classroom session:

https://mbit.io/csf-1-classroom
	� View the project page on the microbit.org

website: https://mbit.io/csf-1-make

https://mbit.io/csf-1-intro
https://mbit.io/csf-1-coding
https://mbit.io/csf-1-project
https://mbit.io/csf-1-classroom
https://mbit.io/csf-1-make

18

Section 3
Coding lessons

19

Coding lesson menu
Use this table to pick the projects that will work best for your students. They don’t need to
be taught as a sequence—you can pick as many or as few as you like.

Beginner Intermediate Stretch

Title Lesson 2:
Step counter

Lesson 3:
micro:bit pet

Lesson 4:
Max-min thermometer

Description Use variables to track and
collect data about how far
you walk or move.

Create an electronic pet
and learn how variables can
be used to make comput-
er simulations of the real
world.

Make a thermometer that
records highs and lows
using conditionals and more
advanced use of variables.

Key
Concepts

	� Variables
	� Data
	� Events

	� Simulation
	� Variables
	� Loops
	� Events
	� Conditionals

	� Variables
	� Data
	� Loops
	� Events
	� Conditionals

CSTA
Standards

CS – Computing systems

1B-CS-02 - Model how com-
puter hardware and software
work together as a system to
accomplish tasks.

AP - Algorithms &
Programming

1B-AP-09 - Create programs
that use variables to store and
modify data.

1B-AP-10 - Create programs
that include sequences,
events, loops, and condition-
als.

CS – Computing systems

1B-CS-02 - Model how com-
puter hardware and software
work together as a system to
accomplish tasks.

AP - Algorithms &
Programming

1B-AP-09 - Create programs
that use variables to store and
modify data.

1B-AP-10 - Create programs
that include sequences,
events, loops, and condition-
als.

CS – Computing systems

1B-CS-02 - Model how comput-
er hardware and software work
together as a system to accom-
plish tasks.

DA – Data & Analysis

1B-DA-07 - Use data to highlight
or propose cause-and-effect
relationships, predict outcomes,
or communicate an idea.

AP - Algorithms &
Programming

1B-AP-09 - Create programs
that use variables to store and
modify data.

1B-AP-10 - Create programs
that include sequences, events,
loops, and conditionals.

20

Warm up
Explain the aim Explain the project aim

Reinforce key
learning

Reinforce key learning relevant to CS Fundamentals and
make connections with prior learning by either:

	� Watching an introduction video together
- or -

	� Exploring the micro:bit project. Transfer the project
code from the editor before the lesson to some
micro:bits, which you can pass around your class like
you did in “Meet your micro:bit”

Examine the code Examine a completed program in the online simulator with
your class by projecting the simulator as a giant virtual
micro:bit, which gives you the option to look at the code
blocks together

Main activity

Student coding Student coding activity. Pick whichever method suits your
teaching style and students:

	� Step-by-step coding videos
	� A micro:bit classroom live coding session (see

bottom of page 21)

Coding lessons
How to teach the coding lessons
Make sure you’ve completed the “Meet your micro:bit” exploration lesson, then use
the coding lesson menu (on page 19) to choose which lessons are the best fit for
your students.

Follow this format when you’re teaching any of the projects that follow:

21

Wrap up
Discussion For reflection on key learning

CS talking points for code

Code blocks Completed program blocks so you know where your
students need to get to and can judge at a glance how
complex each project is; explanations are provided so you
can talk about how the code works with your students and
help them debug

Extended learning
Idea Suggestions for additional learning that build off the lesson

micro:bit classroom
Each lesson activity’s code can be opened directly in micro:bit classroom,
our free tool for teaching live coding lessons. Before the lesson, you can view
the code for yourself and decide what starter code to give your students.
You can break the code blocks apart so they have to reassemble them, add
instructions as comments (https://mbit.io/csf-comments), remove certain
blocks, or give them a blank canvas.

Key features of micro:bit classroom:
	� Free of charge
	� No logins, registration or passwords needed for teachers or students
	� Set starter code for your students
	� View students’ code from your computer in real time
	� Download a snapshot of all students’ code at any time as a Word

document
	� Save the whole lesson as a single file so you can resume it at a later

date
	� Keep control of all your students’ data

Find out more at https://classroom.microbit.org/

https://mbit.io/csf-comments
https://classroom.microbit.org/

22

Lesson 2: Step counter
coding
Level: Beginner

Warm up
Explain the aim Code and make a simple fitness tracker using

variables to record how many steps you’ve taken.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-f2-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-f2-project
Discuss how you might wear the micro:bit and
battery pack—for example, by putting it in a
pocket or attaching it to your arm, shoe, or leg.
Discuss which computing concepts are being
used and where students may have used them
before:

	� Variable: a label for a piece of information
used in a program (e.g., the number of steps
taken is stored in a variable)

	� Data: a collection of information (e.g., the
number of steps taken is data—you might
collect your own step counts over several
days, or compare step counts with other
people; this is all data)

	� Event: an action that causes something
to happen (e.g., when the micro:bit’s
accelerometer detects movement, it triggers
code to increase the step count variable by 1
and show it on the LED display)

https://mbit.io/csf-f2-intro
https://mbit.io/csf-f2-project

23

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-f2-project

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-f2-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-f2-classroom

Students can then try the step counters out with
real micro:bits to collect data.

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-f2-project

At the start of the program, the “on start” block
sets the value of the “steps” variable to zero. This
is called initializing the variable. It’s important to
do this so you know what value the variable will
have at the start.

https://mbit.io/csf-f2-project
https://mbit.io/csf-f2-coding
https://mbit.io/csf-f2-classroom
https://mbit.io/csf-f2-project

24

When the micro:bit is shaken (for example, when
you take a step) the accelerometer sensor input
triggers the “shake” event block to carry out two
instructions. The “steps” variable is increased by
1 from its current value (regardless of what that
value is).
It then shows the updated value of the “steps”
variable on the LED display output.
The sequence of these instructions is important:
you must update the variable before showing it, or
the information shown will be out of date and you
will see inaccurate data.

Extended learning
Reset Make a reset button by adding an “on button A

pressed” event block to reset the step counter
variable back to 0.

Daily trends Collect step count data over several days and see
if you can spot any patterns suggesting when you
are most active.

Calculate the distance Measure the length of your average step and
multiply this by your step count to find out how far
you have walked. Can you code your micro:bit to
work this out for you using one of the Math blocks
in MakeCode?

Make a more sensitive
counter

Code a more advanced “Sensitive step counter”
project which uses accelerometer strength
readings: https://mbit.io/csf-step-counter-2

Data logging If you have the micro:bit V2 (the version with the
built-in speaker), use data logging to make a
personalised step counter:
https://mbit.io/csf-movement-data

Find this project and more
on microbit.org

https://mbit.io/csf-f2-make

https://mbit.io/csf-step-counter-2
https://mbit.io/csf-movement-data
https://mbit.io/csf-f2-make

25

Lesson 3: micro:bit pet
coding
Level: Intermediate

Warm up
Explain the aim Code your own electronic pet and learn how

loops, variables, events, and conditionals can
work together to create a simulation of a pet that
craves attention and gets sad if you ignore it.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-f3-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-f3-project
Discuss where these concepts are being used and
where students may have used them before:

	� Simulation: a program which replicates
or mimics key features of a real world
event (e.g., the micro:bit code mimics the
behaviour of an animal)

	� Variable: a label for a piece of information
used in a program (e.g., a variable is used
to store how long you have ignored your pet
for)

	� Loop: the action of doing something over
and over again (e.g., a loop keeps the timer
running)

	� Event: an action that causes something
to happen (e.g., shaking or touching the
micro:bit keeps the pet happy)

	� Conditional: a statement that only runs
under certain conditions (e.g., if the timer
count reaches different numbers, the pet
gets sad, falls asleep, or even dies)

https://mbit.io/csf-f3-intro
https://mbit.io/csf-f3-project

26

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-f3-project
Note that the code for this project is designed
to work in the MakeCode simulator and on the
micro:bit V2 (the version with the built-in speaker
and gold touch logo).
If you have the micro:bit V1, you’ll need to make
the following changes:

	� Delete the “play sound” blocks or replace
them with “start melody”—see “A note about
sound” on page 12

	� Replace the “on logo pressed” block with
“on button A pressed

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-f3-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-f3-classroom

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-f3-project

https://mbit.io/csf-f3-project
https://mbit.io/csf-f3-coding
https://mbit.io/csf-f3-classroom
https://mbit.io/csf-f3-project

27

At the start of the program, the micro:bit shows a
neutral face and makes a “hello” sound.

The pet craves attention, so the event of pressing
the logo or shaking the micro:bit resets the
“timer” variable back to 0, shows an interested
expression on the LED display output, and plays a
happy sound.

A “forever” loop keeps increasing the “timer”
variable and checking how long you have ignored
the pet for.
The code uses conditionals (“if… then…” blocks)
to show different images and play different sounds
depending on how long the pet has been ignored
for.
If the timer reaches 40 seconds, the pet dies and
a special “while true” loop effectively stops the
code running. You can bring your micro:bit back to
life by pressing the reset button on the back of the
micro:bit or by disconnecting and reconnecting the
power (battery pack or USB cord).

28

Extended learning
Add new pet reactions Add your own expressions and sounds at different

values of the “timer” variable.

Talk to your pet If you have a micro:bit V2 (the version with the
built-in speaker), add an “on loud sound” input
block so your pet can respond when you talk or
sing to it using the built-in microphone.

Two pets are better than
one

If you have previously used the micro:bit’s radio
feature (https://mbit.io/csf-radio), you can make
pets interact with each other; for instance, by
making a pet happy when it’s close to another
micro:bit pet. You can use the “radio set transmit
power” block to reduce the power to 0 so pets
have to be very close to each other for this to
work.

Find this project and more
on microbit.org

https://mbit.io/csf-f3-make

https://mbit.io/csf-radio
https://mbit.io/csf-f3-make

29

Lesson 4: Max-min
thermometer coding
Level: Stretch

Warm up
Explain the aim Make a thermometer that records high and

low temperatures using conditionals and more
advanced use of variables.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-f4-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-f4-project
Discuss how you might use this—where would
you place micro:bits to collect this data? How
might you gather, visualize, and interpret the data?
Discuss where these computing concepts are
being used and where students may have used
them before:

	� Variable: a label for a piece of information
used in a program (e.g., the maximum
and minimum temperatures are stored in
variables so we can keep them updated and
recall the information when we need it)

	� Data: a collection of information (e.g.,
the values of the maximum and minimum
temperature are data)

	� Events: an action that causes something to
happen (e.g., the event of pressing button
A or B causes the minimum or maximum
temperature to be displayed)

https://mbit.io/csf-f4-intro
https://mbit.io/csf-f4-project

30

	� Loops: the action of doing something over
and over again (e.g., the micro:bit uses a
loop to keep showing a flashing period and
checking if the temperature is lower than
the previous minimum or higher than the
previous maximum)

	� Conditional: a statement that only runs
under certain conditions (e.g., if the current
temperature is lower than the minimum,
update the record of the minimum; else if it is
higher than the maximum, update the record
of the maximum temperature)

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-f4-project

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-f4-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-f4-classroom

Wrap up

Discussion Share student work, revisit key concepts used,
and explore ideas for extended learning.

CS talking points for code

Completed program for
teachers

https://mbit.io/csf-f4-project

https://mbit.io/csf-f4-project
https://mbit.io/csf-f4-coding
https://mbit.io/csf-f4-classroom
https://mbit.io/csf-f4-project

31

At the start of the program, the “on start”
block initializes three variables:

	� “current temperature” which will store
the temperature when it’s tested every 2
seconds

	� “max” which will store the maximum
temperature

	� “min” which will store the minimum
temperature

Note that at the start these all have the same
value.

The event of pressing a button causes the
minimum or maximum temperature to be
shown on the LED display output.

32

This is the smart part of the code! A “forever”
loop keeps the program running.
It shows a period on the LED display so you
know it’s running.
The “current-temperature” variable is
updated to the most current reading from the
micro:bit’s temperature sensor input, located
inside its processor.
Conditionals (if… then… else if… then…)
compare the new reading with the previous
“max” and “min” values.
If the “current-temperature” value is less than
the previous “min” value, it sets “min” to be
the same as the “current-temperature”.
Else, if the “current-temperature” value
is more than the previous “max” value, it
sets “max” to be the same as the “current-
temperature”.
It then waits 1 second, clears the LED display
and waits 1 more second.
The loop then starts again by resuming the
flashing period on the display.

Extended learning
Show the current temperature Add an “on button A+B pressed” input block

to show the current temperature.

Convert Celsius to Fahrenheit The micro:bit thermometer works in the
Celsius temperature scale. Add some code to
convert the temperature to Fahrenheit when
it’s displayed. You can use a function like in
this project or borrow the math blocks from it:
https://mbit.io/csf-fahrenheit

https://mbit.io/csf-fahrenheit

33

Data logging The micro:bit will lose its maximum-minimum
data when the power is disconnected. If
you have the micro:bit V2 (the version with
the built-in speaker), you can use its data
logging feature to record data that stays
on the micro:bit even when the power is
removed, such as in this project that records
temperature and light levels:
https://mbit.io/csf-data-logger

Find this project and more on
microbit.org

https://mbit.io/csf-f4-make

https://mbit.io/csf-data-logger
https://mbit.io/csf-f4-make

34

Section 4
Vocabulary

35

Vocabulary
Here are key computing terms from Code.org’s CS Fundamentals Course F which
are relevant to the lessons in this guide, along with some words frequently used in
physical computing.

	� Algorithm – A list of steps to finish a task.
	� Bug – Part of a program that does not work correctly.
	� Conditional – A statement that only runs under certain conditions.
	� Data – A collection of information.
	� Debugging – Finding and fixing problems in an algorithm or program.
	� Event – An action that causes something to happen.
	� Gestures – Different ways of moving the micro:bit; for example shaking it,

placing it display-side up flat on a table, turning it face down, and so on.
	� Hardware – The physical, electronic parts of a computer system.
	� Input – The information computers get from users or sensors.
	� LED – Light Emitting Diode. The micro:bit has 25 LEDs on the front arranged

in a 5 x 5 grid for showing pictures, numbers, and words.
	� Loop – The action of doing something over and over again.
	� MakeCode – The Microsoft block editor used for creating programs for

your micro:bit. It’s similar to Scratch and the block code editors used in CS
Fundamentals.

	� micro:bit – A tiny computer packed with sensors, inputs, and outputs.
	� Output – The information users get from computers.
	� Program – An algorithm that has been coded into something that can be run

by a machine.
	� Programming – The art of creating a program.
	� Repeat – To do something again.
	� Sensor – A device that detects or records changes in the environment, such

as the micro:bit’s sensors for temperature, light, movement, and magnetism.
	� Simulator (MakeCode) – A pretend, or virtual, micro:bit in the MakeCode

editor that lets you test your programs before transferring them to a real

36

micro:bit.
	� Simulation – A program which replicates or mimics key features of a real

world event
	� Software – Programs made of code that tell computer what to do.
	� Toolbox (MakeCode) – The middle part of the MakeCode editor where you

find all the code blocks you need to build your micro:bit programs.
	� USB – Universal Serial Bus, the connection used to connect a computer to a

micro:bit to transfer programs to it.
	� Variable – A label for a piece of information used in a program.
	� Workspace (MakeCode) – The right-hand part of the MakeCode editor

where you assemble code blocks into programs.

Further reading
You can find more computing vocabulary for Code.org’s CS Fundamentals
Course F: https://studio.code.org/s/coursef-2023/vocab
The Micro:bit Educational Foundation web site also has a list of terms useful when
teaching physical computing: https://microbit.org/teach/for-teachers/glossary/

https://studio.code.org/s/coursef-2023/vocab
https://microbit.org/teach/for-teachers/glossary/

