
micro:bit Physical
Computing Fundamentals

Physical Computing for
Code.org CS Fundamentals Course E

2

Contents

1. Welcome to micro:bit Physical Computing Fundamentals 3

What you’ll find in this guide� 4

CS Fundamentals and physical computing� 5

An introduction to the BBC micro:bit physical computing device� 6

2. “Meet your micro:bit” exploration 7

What your students will learn� 8

Lesson format� 9

Equipment list� 9

	 “Meet your microbit” video guide� 9

Before the lesson preparation� 10

Lesson 1: Meet your micro:bit� 12

Warm up� 12

Main activity� 13

Wrap up� 14

CS talking points for code� 15

Extended learning� 17

3. Coding lessons 18

Coding lesson menu� 19

How to teach the coding lessons� 20

Lesson 2: Sensory toy coding� 22

Lesson 3: Simple door alarm coding� 25

Lesson 4: Tilt alarm coding� 28

4. Vocabulary 31

3

Section 1
Welcome to micro:bit Physical

Computing Fundamentals

4

Welcome to micro:bit Physical
Computing Fundamentals
What you’ll find in this guide
This guide contains everything you need to use the BBC micro:bit to add the
immersive power of physical computing to your teaching of Code.org’s CS
Fundamentals Course E.

You’ll find:
	� An introductory exploration lesson so you and your students can get

to know some of the micro:bit’s features and start making links with prior
learning.

	� A coding lesson menu to help you choose lessons that suit your students.
	� A guide to teaching the coding lessons, which explains how you can use

different resources that suit your students, such as step-by-step coding
videos and micro:bit classroom sessions.

	� Three coding lessons to choose from matched to relevant CS topics.
	� Key vocabulary relevant to CS Fundamentals Course E and physical

computing with the micro:bit.

https://studio.code.org/s/coursee
https://studio.code.org/s/coursee

5

What your students will learn —
CS Fundamentals and physical computing
Lessons in this guide build on what your students are already learning and allow
them to transfer that from the screen into physical projects they can code and hold
in their hands.

Computing topics from CS Fundamentals covered in these lessons include:
	� Event – an action that causes something to happen
	� Impacts of computing – understanding the good and bad effects computing

can have on different groups of people, specifically:
	� Designing for accessibility – making design decisions that are driven

by the needs of different groups of people
	� Conditional – a statement that only runs under certain conditions
	� Function – a piece of code that you can call over and over again

Note that events are not specifically covered in CS Fundamentals Course E, but are
covered in Courses C and D.
There are four micro:bit physical computing guides for CS Fundamentals Courses
C through F, so you can use micro:bit projects with students from second grade
through fifth grade.

6

An introduction to the BBC micro:bit physical
computing device

The BBC micro:bit is a tiny computer used by millions of children around the world.
It’s packed with inputs like buttons and sensors for light, movement, temperature,
magnetism, and sound. It can also output pictures, numbers, and words on its LED
display, make sound and music, and even communicate with other micro:bits using
radio.
The micro:bit needs instructions—programs—to tell it what to do. Using the online
Microsoft MakeCode block editor, your students will be able to create working
code in seconds which they can test out in the simulator before transferring them
to a real micro:bit over a USB cable. They can then unplug the micro:bit from the
computer, attach a battery pack, and use their projects anywhere.
By making micro:bit projects, your students can take their code off the screen and
make self-contained physical devices they can hold in the palms of their hands,
making abstract computing concepts tangible.
You can find out more about the BBC micro:bit, including more projects, lessons,
and support, on our website: https://microbit.org/

https://microbit.org/

7

Section 2
“Meet your micro:bit”

exploration lesson

8

“Meet your micro:bit” exploration lesson

What your students will learn
This lesson is a pre-requisite for teaching the coding lessons in this guide. It
gives your students an early hands-on experience to discover the excitement that
learning with the micro:bit offers.
It helps reinforce what your students already know about code and computing
concepts by transferring them to the physical world through exploring pre-
programmed micro:bits.
The exploration is also designed for you to model reviewing code together, helping
your students make links between familiar computing concepts and their practical
application by programming a physical device.

9

Lesson format
The lesson requires some short preparation to transfer the exploratory project onto
micro:bits to share with your students:

	� Watch the video
	� Put code onto micro:bits

Then teach the lesson:
	� Warm-up: introduce the micro:bit and the activity.
	� Main activity: students work in pairs to explore pre-programmed micro:bits.

They’ll explore different physical inputs and outputs while you challenge
them to think about what computing concepts might be being used to make
the program work.

	� Wrap-up: discuss what they’ve discovered and look at the project code
together. You’ll start to familiarize yourselves with the online Microsoft
MakeCode block editor.

You can optionally follow this with another lesson where students recreate the code
for themselves.

Equipment list
You will need:

	� Access to the MakeCode online editor on the teacher’s computer.
	� Several micro:bits with micro USB cords. One micro:bit for every two to

three students is ideal.
	� A power source for the micro:bits. Battery packs are best, but you can

also power them from computer USB ports.

“Meet your microbit” video guide
We’ve created a YouTube video to introduce this first lesson to you:
https://mbit.io/csf-1-lesson-guide

10

Before the lesson preparation

This is also a chance to familiarize yourself with the main parts of the
MakeCode editor:

The Simulator, a virtual micro:bit that lets you demonstrate working code
to your students, and lets your students test, debug, iterate, and improve
their code before transferring it to their micro:bits. Click on button A to try
it out.

The Toolbox, where you’ll find the code blocks you need.

The Workspace, where you’ll assemble program code blocks.

The Download button. Click on this when you’re ready to transfer code
to a micro:bit connected by a micro USB cable to your computer.

1

2

3

4

1 2

3

4

Get to know the MakeCode editor
Follow this link to open the “Meet your micro:bit” MakeCode project:
https://mbit.io/csf-1-project

https://mbit.io/csf-1-project

11

Transfer the project code onto your class micro:bits
Click on “Download” to save the MakeCode blocks program as a HEX file. This a
special version of the program the micro:bit can understand.

Plug a micro:bit into your computer’s USB port. It should appear on your computer
like a USB flash storage drive called MICROBIT.

Drag and drop the “Meet your micro:bit” HEX file from your computer’s downloads
folder to the MICROBIT drive. You should see a light on the back of your micro:bit
flash as it copies. The program will start running on the micro:bit as soon as the
copying is complete. Note that programs stay on the micro:bit even when the
power is disconnected.
Copy this HEX file onto several micro:bits—one for every two to three students is
ideal.

12

Lesson 1: Meet your micro:bit

Warm up
Introduction Introduce the BBC micro:bit to your students:

	� The micro:bit is a tiny computer you can program to
make self-contained projects to do different things.

	� For it to work, it first needs to be programmed to tell it
what to do.

	� Today you’ll be given micro:bits that have already
been programmed. What can you figure out about the
micro:bit and the code that makes it work?

Events The program on these micro:bits responds to different
events—can your students work out what they are?
(Pressing different buttons and shaking the micro:bit)

Inputs & Outputs Your students should consider what inputs—ways of
getting information into the computer—this micro:bit
project is using: the buttons, the accelerometer that senses
when you shake the micro:bit, and the light sensor that
measures how much light is falling on the micro:bit.
Also ask your students what outputs it’s using. Outputs
are used to send information from a computer out into the
world—for example pictures and text on the micro:bit’s LED
display.

A note about sound
If your students have the BBC micro:bit V2, they’ll also hear different sounds
on the built-in speaker output when they press different buttons and shake the
micro:bit. You could ask your students to think about what kinds of information
they can communicate with sound. Can sounds be happy? Sad? Fast? Slow?
Can sounds even say “hello” or “goodbye”?
If your students have the micro:bit V1, they can hear the sounds by connecting
headphones or an amplified speaker with alligator clips to pin 0 and pin
GND—the diagram in the MakeCode simulator shows you how to make the
connection. This is not essential—you can run this activity completely
without sound.

13

Main activity
Examine the
micro:bit

Students work in pairs or small groups to investigate the
micro:bit and identify events, inputs, outputs, and any
coding concepts they recognize from prior learning.
They can optionally record their findings in any way you
wish—for example on paper, whiteboards, or electronically.
It can also be informal or formal—for example in a table.

Explore the “Meet
your micro:bit”
project

Students should...
	� Connect a power source (battery pack or USB cord)

and notice what happens (a happy face appears on
the LED display output).

	� Press button A to see a zooming square animation.
Does it repeat? How many times? Does it get faster or
slower? What computing concepts might be making
this work? (A sequence to make an animation; loops
to make the animation repeat).

	� Press button B to see text scroll across the display.
Where else do they see visual information displayed
like this? What might they use it for on the micro:bit?

	� Press buttons A and B together to make a sun or
moon appear. Can your students figure out what is
making the image change? (The LED display output
can also work as a light sensor input, so if they cover
the micro:bit they’ll see a moon, and if they shine light
on it they’ll see a sun).

Get hands on!

14

Wrap up
Discussion Ask your students to discuss what they discovered

with you and the class.
Share the code (https://mbit.io/csf-1-project)
with your students and see how many computing
concepts they already know that are used to make
the project work. You can use the simulator as you
go.
Talk about as many of the event blocks as
are appropriate to the time available and your
students’ prior learning.

Code Expert!

https://mbit.io/csf-1-project

15

CS talking points for code
“on start” event block
The micro:bit starting to run the program is the
event that triggers the “on start” block. “show
icon happy” is the first instruction. So, we see a
happy face on the micro:bit when it’s powered up.
It’s an opportunity to talk about visual displays
as outputs, which are how computers send
information out into the world.

“on button A pressed” event block
“on button A pressed”, “on button B pressed”, “on
button A plus B pressed” and “on shake” are all
input blocks, triggered by different events.
The “on button A pressed” block is triggered by
the event of pressing the button A input on the
micro:bit. It then carries out the instructions to play
the sound output and display the zooming square
animation.
If you used sound in your exploration, look at the
“start melody” block and listen to the sounds
when you click on the buttons in the simulator.
After the sound starts playing, a loop starts,
repeating an animation two times.
The display shows a square getting bigger quickly
and getting smaller slowly.
The sequence of images makes up the animation.
The pause blocks keep images on the screen
for different times—smaller numbers make the
animation faster, larger numbers make it slower.

16

“on button B pressed” event block
The “on button B pressed” input block uses
another event to trigger instructions that clear the
screen, pause briefly, then show the word “hello”
as a greeting on the LED display output. What else
do your students think they could use that for?

“on button A+B pressed” event block
The “on button A+B pressed” input block reacts
to the event of pressing both buttons at the same
time.

The program uses a conditional statement:
If the light level is less than 50, then it shows a
moon on the LED display output.
Else (otherwise) it shows a sun.
This part of the code shows different pictures on
the display output, depending on the amount of
light around you.
The light level is measured by another input, the
“light level” block, which measures how much light
is falling on the micro:bit.
So, the LED display works as a light sensor input
and also as an output to display our pictures and
messages.
What could your students build with a tiny
computer that knows when it’s light or dark around
you?

17

“on shake” event block
The “on shake” input block is triggered by an
event when the micro:bit’s accelerometer sensor
detects movement. The micro:bit shows a
surprised face, pauses for one second, and clears
the screen.
Ask your students what other technology they
know that reacts to movement.
How might you use movement in your own
projects?

Extended learning

Other resources You can use any of these resources to support an
optional follow-up lesson, where your students
recreate the code for themselves and practice
transferring code to their micro:bits. You can further
challenge them to remix the code to add more
inputs and outputs.

	� Introduction video: https://mbit.io/csf-1-intro
	� Step-by-step coding video:

https://mbit.io/csf-1-coding
	� Completed MakeCode project:

https://mbit.io/csf-1-project
	� micro:bit classroom session:

https://mbit.io/csf-1-classroom
	� View the project page on the microbit.org

website: https://mbit.io/csf-1-make

https://mbit.io/csf-1-intro
https://mbit.io/csf-1-coding
https://mbit.io/csf-1-project
https://mbit.io/csf-1-classroom
https://mbit.io/csf-1-make

18

Section 3
Coding lessons

19

Coding lesson menu
Use this table to pick the projects that will work best for your students. They don’t need to
be taught in sequence—you can pick as many or as few as you like.

Beginner Intermediate Stretch

Title Lesson 2:
Sensory toy

Lesson 3:
Simple door alarm

Lesson 4:
Tilt alarm

Description Turn the micro:bit into a toy
that responds to movement
with sound and lights.

Use the micro:bit’s com-
pass and a magnet to tell if
someone has been in your
room.

Make an alarm to tell if an
object has been moved us-
ing the micro:bit’s radio and
accelerometer; learn how
functions can make code
more compact and easier to
read and modify.

Key
Concepts

	� Events
	� Impacts of computing
	� Designing for

accessibility

	� Loops
	� Conditionals: if...then

	� Functions

CSTA
Standards

AP - Algorithms &
Programming

1B-AP-10 - Create programs
that include sequences,
events, loops, and condition-
als.

IC - Impacts of Computing

1B-IC-19 - Brainstorm ways to
improve the accessibility and
usability of technology prod-
ucts for the diverse needs and
wants of users.

AP - Algorithms &
Programming

1B-AP-10 - Create programs
that include sequences,
events, loops, and condition-
als.

AP - Algorithms &
Programming

1B-AP-11 - Decompose
(break down) problems into
smaller, manageable subprob-
lems to facilitate the program
development process.

20

Warm up
Explain the aim Explain the project aim

Reinforce key
learning

Reinforce key learning relevant to CS Fundamentals and
make connections with prior learning by either:

	� Watching an introduction video together
- or -

	� Exploring the micro:bit project. Transfer the project
code from the editor before the lesson to some
micro:bits, which you can pass around your class like
you did in “Meet your micro:bit”

Examine the code Examine a completed program in the online simulator with
your class by projecting the simulator as a giant virtual
micro:bit, which gives you the option to look at the code
blocks together

Main activity

Student coding Student coding activity. Pick whichever method suits your
teaching style and students:

	� Step-by-step coding videos
	� A micro:bit classroom live coding session (see

bottom of page 21)

Coding lessons
How to teach the coding lessons
Make sure you’ve completed the “Meet your micro:bit” exploration lesson, then use
the coding lesson menu (on page 19) to choose which lessons are the best fit for
your students.

Follow this format when you’re teaching any of the projects that follow:

21

Wrap up
Discussion For reflection on key learning

CS talking points for code

Code blocks Completed program blocks so you know where your
students need to get to and can judge at a glance how
complex each project is; explanations are provided so you
can talk about how the code works with your students and
help them debug

Extended learning
Idea Suggestions for additional learning that build off the lesson

micro:bit classroom
Each lesson activity’s code can be opened directly in micro:bit classroom,
our free tool for teaching live coding lessons. Before the lesson, you can view
the code for yourself and decide what starter code to give your students.
You can break the code blocks apart so they have to reassemble them, add
instructions as comments (https://mbit.io/csf-comments), remove certain
blocks, or give them a blank canvas.

Key features of micro:bit classroom:
	� Free of charge
	� No logins, registration or passwords needed for teachers or students
	� Set starter code for your students
	� View students’ code from your computer in real time
	� Download a snapshot of all students’ code at any time as a Word

document
	� Save the whole lesson as a single file so you can resume it at a later

date
	� Keep control of all your students’ data

Find out more at https://classroom.microbit.org/

https://mbit.io/csf-comments
https://classroom.microbit.org/

22

Lesson 2: Sensory toy coding
Level: Beginner

Warm up
Explain the aim Use the micro:bit’s accelerometer to make a toy

that reacts to different movements by making
different sounds and showing different pictures on
the LED display output.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-e2-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-e2-project
Discuss how a project like this could help learners
who respond well to stimulation through touch,
light, and sound.
Discuss where these concepts are being used and
where students may have used them before:

	� Events: an action that causes something to
happen (e.g., when you move the micro:bit
in different ways, it outputs different pictures
and sounds)

	� Impacts of computing: understanding the
good and bad effects computing can have
on different groups of people (e.g., a toy can
have a positive impact on users)

	� Designing for accessibility: making design
decisions that are driven by the needs of
different groups of people (e.g., this toy uses
simple movements rather than pressing
small buttons, which some users may find
difficult)

https://mbit.io/csf-e2-intro
https://mbit.io/csf-e2-project

23

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-e2-project
Note that the code for this project uses the “play
sound” block that works in the simulator and on
the BBC micro:bit V2 with the built-in speaker.
If you have the micro:bit V1, you can code this
project without sound, or use the “start melody”
block instead and connect headphones or an
amplified speaker to pins 0 and GND.

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-e2-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-e2-classroom

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-e2-project

https://mbit.io/csf-e2-project
https://mbit.io/csf-e2-coding
https://mbit.io/csf-e2-classroom
https://mbit.io/csf-e2-project

24

The program uses input blocks to sense different
events using the micro:bit’s accelerometer sensor
input to detect different movements or gestures.
When you click on “shake” in the “on shake”
block, it opens a dropdown menu with diagrams
of the different movement events the micro:bit can
react to.

The events trigger different outputs: pictures
on the LED display output and sounds on the
speaker.

Extended learning
Make animations Use loops to create animations when the micro:bit

is moved in different ways.

Touch sensing Add more inputs such as touching the logo on
the micro:bit V2, touching the pins, or making
touchable buttons out of tin foil and attaching
those to the pins.
Learn more about touch pins here:
https://mbit.io/csf-pins

Find this project and more
on microbit.org

https://mbit.io/csf-e2-make

https://mbit.io/csf-pins
https://mbit.io/csf-e2-make

25

Lesson 3: Simple door alarm
coding
Level: Intermediate

Warm up
Explain the aim Create an alarm to show when someone has

been in a room using a magnet and the micro:bit’s
compass as a magnetometer to measure the
strength of magnetic fields.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-e3-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-e3-project
Instead of using real doors, you can model this
project in class using a magnet and any box with a
lid—for example, a shoe box.
Discuss possible uses for an alarm like this. For
example, making sure doors are kept closed to
keep warm or cool air in a room.
Discuss where these concepts are being used and
where students may have used them before:

	� Loop: the action of doing something over
and over again (e.g., a “forever” block keeps
the micro:bit checking if the magnet is near
by measuring the strength of the magnetic
field)

	� Conditional: a statement that only runs
under certain conditions (e.g., if the magnetic
field strength falls below a certain level
because the door has been opened and the
magnet has moved away from the micro:bit,
it shows an alert on the LED display)

https://mbit.io/csf-e3-intro
https://mbit.io/csf-e3-project

26

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-e3-project
Note that the value you use to trigger the alarm
may be different depending on how strong your
magnet is, so there are a few steps to making this
project:

	� Coding
	� Transfer and test code on a real micro:bit:

does moving the magnet away trigger the
alarm? If not, press button A to measure the
strength of your magnet when it’s close and
far away to decide what number to use

	� Modify the code to work with your magnet
	� Transfer the code and test again

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-e3-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-e3-classroom

Test the code using a real micro:bit and a magnet.
If the alarm doesn’t work as expected, press
button A to measure the strength of your magnet
when it’s close or far away, and use that number
to replace 200 in the code, then transfer and test
again.

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

https://mbit.io/csf-e3-project
https://mbit.io/csf-e3-coding
https://mbit.io/csf-e3-classroom

27

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-e3-project

Button A is used to show a reading of the strength
of the magnetic field sensed by the micro:bit’s
compass sensor input. It uses scientific units—
micro Teslas—to measure how strong the
magnetic field is. You can use button A to calibrate
your code: if your magnet is weaker, it’ll show a
smaller number when it’s close to your micro:bit.
You can change the 200 number in the next block
to match what you just measured.

A “forever” loop block keeps checking how strong
the magnetic field is.
If the door is opened, the magnet moves away
from the micro:bit and the magnetic field
measured gets weaker. A conditional “if… then…”
block shows an angry face on the LED display
output if the magnetic field strength falls below
200 micro Teslas.

Extended learning
Test different magnets Test the alarm with different magnets and modify

the code according to how strong they are.

Make some noise Add an audible alarm.

Reset Make the alarm reset itself when the door is
closed.

Find this project and more
on microbit.org

https://mbit.io/csf-e3-make

https://mbit.io/csf-e3-project
https://mbit.io/csf-e3-make

28

Lesson 4: Tilt alarm coding
Level: Stretch

Warm up
Explain the aim Use the micro:bit’s accelerometer and radio

features to make an alarm that warns you when
something has been moved—and learn how
functions can make code more compact and
easier to read and modify.
Note: this project works best with two students
working in pairs, each with their own micro:bit (two
micro:bits per pair of students).

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-e4-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-e4-project

Discuss where these concepts are being used and
where students may have used them before:

	� Function: A piece of code that you can call
over and over again (e.g., the alarm showing
an image on the LED display and playing
an audible alert is in a function because it’s
used twice: when the micro:bit is moved and
when it receives an alert message by radio)

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-e4-project
Note: you will want to give each pair of students a
unique radio group numbers so their alarms only
communicate with each other and not the whole
class.

https://mbit.io/csf-e4-intro
https://mbit.io/csf-e4-project
https://mbit.io/csf-e4-project

29

Main activity
Student coding Students make the project themselves using

the editor and simulator, then transferring
code to micro:bits.
Pick one from:

	� Step-by-step coding video:
https://mbit.io/csf-e4-coding

	� Live micro:bit classroom session:
https://mbit.io/csf-e4-classroom

Wrap up
Discussion Share student work, revisit key concepts

used, and explore ideas for extended learning.

CS talking points for code

Completed program for
teachers

https://mbit.io/csf-e4-project

At the start of the program, the code sets the
radio group, a number between 0 and 255.
Radio groups are like channels. Any micro:bits
in the same group number can communicate
with each other, so you will want to give each
pair of students their own unique number.

When the micro:bit’s accelerometer detects
movement (a shake gesture event), it sends
a radio message and also calls the alarm
function.

https://mbit.io/csf-e4-coding
https://mbit.io/csf-e4-classroom
https://mbit.io/csf-e4-project

30

The function called “alarm” shows an angry
face icon and plays a warning tune when it is
called. We put this code in a function because
it’s used twice. This makes the code shorter,
and also means if you modify it (for example,
to add an animation or different sounds) you
only have to change one piece of code.

If the micro:bit receives a radio message from
a nearby micro:bit in the same radio group,
it also calls the alarm function. This means
you can be alerted to movement of an object
that’s out of sight.

Extended learning
Change the alert Edit the function to change the alert—for

example, you could use animations, scrolling
text, or different sounds.

Radio distance Test out how far away you can get before the
radio messages stop working.

Split the code Split the code into two different programs—
one just to send a radio signal when shaken
which can be kept in the object you want
to keep safe, and another that just receives
messages and alerts you.

Find this project and more on
microbit.org

https://mbit.io/csf-e4-make

https://mbit.io/csf-e4-make

31

Section 4
Vocabulary

32

Vocabulary
Here are key computing terms from Code.org’s CS Fundamentals Course E which
are relevant to the lessons in this guide, along with some words frequently used in
physical computing.

	� Algorithm – A list of steps to finish a task.
	� Bug – Part of a program that does not work correctly.
	� Conditional – A statement that only runs under certain conditions.
	� Debugging – Finding and fixing problems in an algorithm or program.
	� Event – An action that causes something to happen.
	� Function - A piece of code that you can call over and over again.
	� Gestures – Different ways of moving the micro:bit; for example shaking it,

placing it display-side up flat on a table, turning it face down, and so on.
	� Hardware – The physical, electronic parts of a computer system.
	� Input – The information computers get from users or sensors. (This term is

covered in CS Fundamentals Course F but is included here as inputs and
outputs are key concepts in physical computing).

	� LED – Light Emitting Diode. The micro:bit has 25 LEDs on the front arranged
in a 5 x 5 grid for showing pictures, numbers, and words.

	� Loop – The action of doing something over and over again.
	� MakeCode – The Microsoft block editor used for creating programs for

your micro:bit. It’s similar to Scratch and the block code editors used in CS
Fundamentals.

	� micro:bit – A tiny computer packed with sensors, inputs, and outputs.
	� Output – The information users get from computers. (This term is covered in

CS Fundamentals Course F but is included here as inputs and outputs are
key concepts in physical computing).

	� Program – An algorithm that has been coded into something that can be run
by a machine.

	� Programming – The art of creating a program.
	� Repeat – To do something again.
	� Sensor – A device that detects or records changes in the environment, such

33

as the micro:bit’s sensors for temperature, light, movement, and magnetism.
	� Simulator (MakeCode) – A pretend, or virtual, micro:bit in the MakeCode

editor that lets you test your programs before transferring them to a real
micro:bit.

	� Software – Programs made of code that tell computer what to do.
	� Toolbox (MakeCode) – The middle part of the MakeCode editor where you

find all the code blocks you need to build your micro:bit programs.
	� USB – Universal Serial Bus, the connection used to connect a computer to a

micro:bit to transfer programs to it.
	� Workspace (MakeCode) – The right-hand part of the MakeCode editor

where you assemble code blocks into programs.

Further reading
You can find more computing vocabulary for Code.org’s CS Fundamentals
Course E: https://studio.code.org/s/coursee-2023/vocab
The Micro:bit Educational Foundation web site also has a list of terms useful when
teaching physical computing: https://microbit.org/teach/for-teachers/glossary/

https://studio.code.org/s/coursee-2023/vocab
https://microbit.org/teach/for-teachers/glossary/

